您的位置:
首页
>>
管理中心
>>
行业资讯
>>修改新闻资讯信息
资讯类型:
行业要闻
企业动态
新品速递
解决方案
交流培训
嘉宾访谈
产业纵横
人物聚焦
展会动态
会展报告
本站动态
标 题:
*
页面广告:
不显示
显示
副 标 题:
关 键 字:
多个关键字请用“
/
”分隔,如:西门子/重大新闻
内容描述:
新闻来源:
链 接:
责任编辑:
标题图片:
无
/uploadfile/newspic/2009/200908/20090813110159262.jpg
/uploadfile/newspic/2009/200908/20090813110242375.jpg
/uploadfile/newspic/2009/200908/20090813110321618.jpg
当编辑区有插入图片时,将自动填充此下拉框
*
所属类别:
(不超过20项)
电源产品分类
:
UPS电源
稳压电源
EPS电源
变频电源
净化电源
特种电源
发电机组
开关电源(AC/DC)
逆变电源(DC/AC)
模块电源(DC/DC)
电源应用分类
:
通信电源
电力电源
车载电源
军工电源
航空航天电源
工控电源
PC电源
LED电源
电镀电源
焊接电源
加热电源
医疗电源
家电电源
便携式电源
充电机(器)
励磁电源
电源配套分类
:
功率器件
防雷浪涌
测试仪器
电磁兼容
电源IC
电池/蓄电池
电池检测
变压器
传感器
轴流风机
电子元件
连接器及端子
散热器
电解电容
PCB/辅助材料
新能源分类
:
太阳能(光伏发电)
风能发电
潮汐发电
水利发电
燃料电池
其他类
:
其他
静态页面:
生成静态页面
*
内 容:
<P> 如今,低功率解决方案已成为行业的热门话题,尤其是电池供电的便携式设备上的节能方案更是备受关注。一般来说,在较低电压下工作的半导体器件,能够延长手机和多媒体播放器等便携设备在一次充电后的使用时间。然而,在关注便携式设备的同时,人们很容易忽略了其他便携性较低的设备,这些设备其实也要求更高的效率。环保问题和不断上涨的电费,使市场更加重视日常电子设备的整体功率要求。</P> <P> 虽然我们倾向于从低电压的角度去思考节能,但其实大部分电子设备都是通过国家供应的高压电来运行的,有的采用直接通电,有的利用适配器充电。毫无疑问,采用高压配电是将电力分配到广阔地域的最有效方法,但这么高的电压对用电地区来说实在太高,必须进行低效率的降压过程。</P> <P> 因此,改进这个效率缺口的目的显而易见,那就是如何能够在将高AC电压转换为实用性更高的DC电压的过程中,尽量提升效率。这种效率的最大化,对那些直接连接AC主电源的电气设备来说尤其重要。</P> <P><STRONG>二极管桥式电路</STRONG></P> <P> 二极管桥式电路是电子工程领域的最基本元素。工程人员广泛使用二极管桥式电路来为AC电压进行全波整流,使之开始与<STRONG><A href="http://www.cps800.com/news/20193.htm" target=_blank>DC电源</A></STRONG>的特性相近。然后采用电阻、电容和电感网络滤波,使输出直流电压更加平滑。</P> <P> 二极管是由半导体材料P-N结形成的有源器件。但与硅控整流器和晶体管等更先进的有源器件相比,缺少了可控功能。所以标准二极管在正向导通时会出现约0.7V的正向导通电压降,导致全波整流效率降低。这也反映了在大电流应用中,这种功率耗散可以造成非常大的热量损耗和功率损耗。传统的全波输入桥式整流电路的另一个特点,就是不论任何时间,都会有两个二极管同时进行导通,使功耗进一步加大。</P> <P> 虽然拥有以上的缺点,但该拓扑电路在低负载应用中仍是一个高性价比的解决方案。同时,它也在高功率应用中广泛使用,并且日趋流行。比如DC电机现正逐渐取代AC感应电机,而这类设计多会通过二极管桥式电路来提供电压转换。此时的功率代价更为明显。{$page$}</P> <P><STRONG>同步整流</STRONG></P> <P> 针对这个问题,国际整流器公司(IR)利用MOSFET的寄生二极管,开发了能够更好利用半导体技术的全新解决方案。该解决方案改用四个FET来建立桥式结构(如图1)电路,避免了使用二极管而产生的功率损耗。</P> <P align=center><IMG src="/uploadfile/newspic/2009/200908/20090813110159262.jpg" border=0></P> <P align=center><FONT style="FONT-FAMILY: 楷体_GB2312" color=#808080>图1:用四个FET来建立桥式结构电路</FONT></P> <P> 同步整流技术会尽量保持晶体管在半个周期内处于导同状态,从而减少晶体管体内寄生二极管的导通时间。当晶体管导通时,电流不会通过体二极管,从而与跨越整个半周期相比,大幅降低了功率损耗。</P> <P> 在运行状态下,在AC电源半周期起始时,电流开始通过FET的体二极管,晶体管的漏极和源极之间便产生负电压。检测这个负电压,控制电路便开通FET,从而使电流流过FET本体,而不是寄生二极管,从而降低器件的功耗。晶体管的RDS(on)越低,代表解决方案的效率越高。{$page$}</P> <P> 该技术的效能高低主要取决于两个因素:所用的FETS和控制电路的准确性。如图2所示,IR两款同步整流控制芯片IRF1166和IRF1167为200V以下电压提供一个简单的分离式解决方案。这与采用4个FET来驱动无刷式DC电机的电路结构相似,必须确保正确的FET开关时间以避免短路。当AC电压由0V开始上升,电流也会开始流过FET,从而产生负电压, 此时,选用的FET决定了控制电路能否有效地感应到此负电压。</P> <P align=center><IMG src="/uploadfile/newspic/2009/200908/20090813110242375.jpg" border=0></P> <P align=center><FONT style="FONT-FAMILY: 楷体_GB2312" color=#808080>图2:IR两款同步整流控制芯片IRF1166和IRF1167为200V以下电压提供一个简单的分离式解决方案</FONT></P> <P> 该设计的另一个挑战,在于确保控制IC的比较器能够承受高供电电压,同时亦能检测到体二极管的小反向偏压。IR先进的Gen 5 HVIC技术,将精准低电压功能与采用高压隔离的高压器件集成,从而成功战胜这一挑战。 </P> <P> 为了取得最大效益,FET必须在半个周期内全部导通,直到输入电压到0V,当然不能交叉导通。然而,控制电路有可能把这些缓慢变化的电压/电流信号,错误当作下一个周期的电流前沿或后沿。当电流升高引起的压降足够高时,电路可能在输入电压过零点时,短时间反复启动和关闭FET。这种情况最容易在电阻负载的电路中发生,因为电流变化率在该电路中比电容负载等其它电路慢。</P> <P> 解决这个问题的方法,是把一个RC网络,两个自举二极管和自举电容器加到控制电路中。这会在0V电压范围注入更多电流,在这个不确定电压范围内,确保FET源漏级电压高于二极管阈值电压。{$page$}</P> <P> 如果电压高达600V,单IC方案可以集成自举二极管,每个驱动器部分也可以用专用的可配置消隐时间模块取代RC网络,让设计能够容纳不同的FET。设计也可以把FET、自举电容器和控制功能集成到同一个器件中,成为现有二极管全波桥式整流器的直接代替品。这不仅能够显著节省功率,同时也大幅度减少所需的PCB空间。图3展示了可以实现这种功能的集成动态桥式器件。</P> <P align=center><IMG src="/uploadfile/newspic/2009/200908/20090813110321618.jpg" border=0></P> <P align=center><FONT style="FONT-FAMILY: 楷体_GB2312" color=#808080>图3:把FET、自举电容器和控制功能集成到同一个器件中的集成动态桥式器件</FONT>■</P>