您的位置:
首页
>>
管理中心
>>
行业资讯
>>修改新闻资讯信息
资讯类型:
行业要闻
企业动态
新品速递
解决方案
交流培训
嘉宾访谈
产业纵横
人物聚焦
展会动态
会展报告
本站动态
标 题:
*
页面广告:
不显示
显示
副 标 题:
关 键 字:
多个关键字请用“
/
”分隔,如:西门子/重大新闻
内容描述:
本文简要比较了下SiC Mosfet管和Si IGBT管的部分电气性能参数并分析了这些电气参数对电路设计的影响,并且根据SiC Mosfet管开关特性和高压高频的应用环境特点,推荐了金升阳可简化设计隔离驱动电路的SIC驱动电源模块。
新闻来源:
链 接:
责任编辑:
标题图片:
无
/uploadfile/newspic/20150612104108887.jpg
/uploadfile/newspic/20150612104149197.jpg
/uploadfile/newspic/20150612104207723.jpg
当编辑区有插入图片时,将自动填充此下拉框
*
所属类别:
(不超过20项)
电源产品分类
:
UPS电源
稳压电源
EPS电源
变频电源
净化电源
特种电源
发电机组
开关电源(AC/DC)
逆变电源(DC/AC)
模块电源(DC/DC)
电源应用分类
:
通信电源
电力电源
车载电源
军工电源
航空航天电源
工控电源
PC电源
LED电源
电镀电源
焊接电源
加热电源
医疗电源
家电电源
便携式电源
充电机(器)
励磁电源
电源配套分类
:
功率器件
防雷浪涌
测试仪器
电磁兼容
电源IC
电池/蓄电池
电池检测
变压器
传感器
轴流风机
电子元件
连接器及端子
散热器
电解电容
PCB/辅助材料
新能源分类
:
太阳能(光伏发电)
风能发电
潮汐发电
水利发电
燃料电池
其他类
:
其他
静态页面:
生成静态页面
*
内 容:
<P> 摘要:本文简要比较了下SiC Mosfet管和Si IGBT管的部分电气性能参数并分析了这些电气参数对电路设计的影响,并且根据SiC Mosfet管开关特性和高压高频的应用环境特点,推荐了金升阳可简化设计隔离驱动电路的SIC驱动电源模块。 </P> <P> <STRONG>一、引言 </STRONG></P> <P> 以Si为衬底的Mosfet管因为其输入阻抗高,驱动功率小,驱动电路简单,具有靠多数载流子工作导电特性,没有少数载流子导电工作所需要的存储时间,因而开关速度快,工作频率可到500kHz,甚至MHz以上。但是随着其反向耐压的提高,通态电阻也急剧上升,从而限制了其在高压场合的应用。IGBT具有高反向耐压和大电流特性,但是对驱动电路要求很严格,并且不适合工作在高频场合,一般IGBT的工作频率为20kHz以下。 </P> <P> SiC作为一种宽禁代半导体器件,具有饱和电子漂移速度高、电场击穿强度高、介电常数低和热导率高等特性。以SiC为衬底的Mosfet管具有阻断电压高、工作频率高且耐高温能力强,同时又具有通态电阻低和开关损耗小等特点,是高频高压场合功率密度提高和效率提高的应用趋势。 </P> <P> <STRONG>二、SiC Mosfet与Si IGBT性能对比 </STRONG></P> <P> 目前市面上常见的SiC Mosfet电流均不大于50A,以常见的1200V/20A为例,列举了Cree公司与Rohm公司的SiC Mosfet管的部分电气参数;同样例举了Fairchild 与APT公司的1200V/20A Si IGBT系列的电气参数进行比较; </P> <P align=center><IMG border=0 src="/uploadfile/newspic/20150612104108887.jpg"></P> <P> 通过表格性能对比,可以看出,SiC Mosfet有三个方面的性能是明显优于Si IGBT: </P> <P> 1.极其低的导通电阻RDS(ON),导致了极其优越的正向压降和导通损耗,更能适应高温环境下工作;</P> <P> 2.SiC Mosfet管具有Si Mosfet管的输入特性,即相当低的栅极电荷,导致性能卓越的切换速率; </P> <P> 3. 宽禁带宽度材料,具有相当低的漏电流,更能适应高电压的环境应用; </P> <P> <STRONG>三、驱动电路要求 </STRONG></P> <P> Sic Mosfet具有与Si Mosfet管非常类似的开关特性,通过对Si Mosfet的特性研究,其驱动电路具有相同的特性: </P> <P> 1. 对于驱动电路来讲,最重要的参数是门极电荷,Mosfet管的栅极输入端相当于是一个容性网络,因此器件在稳定导通时间或者关断的截止时间并不需要驱动电流,但是在器件开关过程中,栅极的输入电容需要充电和放电,此时栅极驱动电路必须提供足够大的充放电脉冲电流。如果器件工作频率越快,栅极电容的充放电时间要求越短,则要求输入的栅极电容越小,驱动的脉冲电流越大才能满足驱动要求; </P> <P> 2.栅极驱动电路必须合理选择一定的驱动电压,栅极的驱动电压越高,则Mosfet的感应导电沟道越大,则导通电阻越小;但是栅极驱动电压太大的话,很容易将栅极和漏极之间绝缘层击穿,造成Mosfet管的永久失效; </P> <P> 3.为了增加开关管的速度,减少开关管的关断时间是有必要的;且为了提高Mosfet管在关断状态下的工作可靠性,将驱动电路设计成在关断状态的时候,在栅极加上反向偏置电压,以快速释放栅极输入电容的电荷,减少了关断时间,使得驱动电路更可靠地关断Mosfet;但是反向的驱动电压会增加电路损耗,反向偏置电压最好不要超过-6V; </P> <P> 4.当驱动对象是全桥或者半桥电路的功率Mosfet,或者是为了提高控制电路的抗干扰能力,此时将驱动电路设计成隔离驱动电路;实现电隔离的方式可以通过磁耦合变压器和光耦合器件;但是不管采用磁耦合变压器还是光耦合器件,都要保证耦合器件的延迟时间与耦合分布电容;采用的隔离电源也必须具有高隔离、快速响应时间与低耦合电容的特性。 </P> <P> <STRONG>四、隔离电源特性需求 </STRONG></P> <P> 从驱动电路的特性来看,要求驱动电源具有以下特性: </P> <P> 1.为了适应高频率的使用要求,要求驱动电源具有瞬时的驱动大功率特性,即要求具有大的容性负载能力; </P> <P> 2.为了适应高电压应用使用要求,要求驱动电源具有高耐压能力并且具有超低的隔离电容,来减少高压总线部分对低压控制侧的干扰; </P> <P> 3.隔离驱动电源必须具有合适的驱动电压,即要求电源具有正负输出电压,并且正负输出电压不是对称输出特性; </P> <P> 金升阳针对SiC隔离驱动电路的特点,推出了SiC Mosfet驱动专用电源QA01C。该电源电气性能参数全部达到SiC Mosfet驱动电路的要求,如: <IMG border=0 align=right src="/uploadfile/newspic/20150612104149197.jpg"></P> <P> ● 不对称驱动电压,输出电压 +20/-4VDC 输出电流+100/-100mA </P> <P> ● 大容性负载能力,容性负载为220uF </P> <P> ● 高隔离电压,达到3500VAC </P> <P> ● 极低的隔离电容,低至3.5pF </P> <P> 此驱动电源还满足了其他性能参数特点,具体功能如下: </P> <P> ● 效率高达83% </P> <P> ● 工作温度范围: -40℃ ~ +105℃ </P> <P> ● 可持续短路保护 </P> <P> QA01C具有完整的驱动电路推荐,通过SiC驱动专用电源得到不对称的正向驱动电压20V,负向偏置关断电压-4V;为了防止驱动电压对栅极造成损坏,增加D2和D3来吸收尖峰电压是很有必要的。SiC驱动器采用一般驱动芯片即可;为了实现控制信号与主功率回路的隔离,需要采取隔离措施,推荐采用常见的光耦隔离方案。采用的光耦必须具有高共模抑制比(30KV/us)和比隔离电源大的隔离耐压并且具有极小的延迟时间来适应SiC Mosfet管的高频率工作特性。 </P> <P align=center><IMG border=0 src="/uploadfile/newspic/20150612104207723.jpg"></P> <P> <STRONG>五、总结 </STRONG></P> <P> 通过对SiC Mosfet管与Si IGBT管相关电气参数进行比较,我们发现SiC Mosfet将成为高压高频场合下的应用趋势。根据对SiC Mosfet管的开关特性的研究,金升阳推荐了能简化其隔离设计的专用电源QA01C,同时也推荐了基于SiC Mosfet的驱动电路。</P> <P> 原文链接:http://www.mornsun.cn/news/NewDetail.aspx?id=279&channelid=132<SPAN style="FONT-FAMILY: Webdings"><</SPAN></P>