电力设备电磁兼容问题的研究报告
一、前言
按照国际电工委员会(1EC)定义,电磁兼容(EMC)是指设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成不能承受的电磁干扰的能力。EMC电磁兼容学是一门新兴的跨学科的综合性应用学科,作为边缘技术,它以电气和无线电技术的基本理论为基础,并涉及许多新的技术领域,如微电子技术、计算机技术、微波技术、通信技术和网络技术以及新材料应用等等。电磁兼容技术研究的范围很广,几乎涵盖了所有自动化应用领域,如电力、通信、无线电、交通、航天、军工、计算机和医疗等。
处于同一电力系统中的各种电气设备通过电或磁的联系彼此紧密相连,相互影响,由于运行方式的改变,故障,开关操作等引起的电磁振荡会波及很多电气设备,使这些电气设备的工作性能受到影响,甚至遭到破坏,这些都说明电力系统电磁兼容问题已经成为不容忽视的问题。
二、关于电磁兼容的几个概念
1.电磁兼容环境(EME)
它指存在于给定场所的所有电磁现象的总和。给定场所即空间,指所有电磁现象包括全部时间与全部频谱。
2.电磁兼容(EMC)
EMC指设备或系统在其电磁环境中能正常工作,且不对该环境中任何事物构成电磁干扰。作为一门学科,EMC可以翻译为“电磁兼容”。而作为一个设备或系统的电磁兼容能力,则可称为“电磁兼容性”。由定义可以看出EMC包括两个方面的含义,即设备或系统产生的电磁发射,不致影响其它设备或系统的功能;而本设备或系统的抗干扰能力,又足以使本设备或系统的功能不受其它干扰的影响。
3.电磁干扰(EMI)
电磁干扰指任何可能引起装置、设备和系统性能降低或对有生命物质产生损害作用的电磁现象。它由干扰源、耦合通道和接受器3部分构成。根据干扰传播的途径,电磁干扰分为辐射干扰和传导干扰。辐射干扰(RI)是通过空间并以电磁波的特性和规律传播的,但不是任何装置都能辐射电磁波的;传导干扰(CI)是沿着导体传播的干扰,即传导干扰的传播在干扰源和接受器之间肯定有一完整的电路连接。
4.电磁敏感度(EMS)
一般来说,敏感度高,抗干扰度就低。EMS从不同角度反映了装置、设备或系统的抗干扰能力。敏感度电平(刚刚开始出现性能降低时的电平)越小,说明敏感度越高,抗干扰度就越低;而抗干扰度电平越高,说明抗干扰度也越高,敏感度就越低。电磁敏感度分为辐射敏感度和传导敏感度。目前电磁兼容(EMC)研究的热点内容主要有电磁干扰源的特性及其传输特性、电磁干扰的危害效应、电磁干扰的抑制技术、电磁频谱的利用和管理、电磁兼容性标准与规范、电磁兼容性的测量与试验技术和电磁泄漏与静电放电等。
三、主要电磁干扰方式及传播途径
电力设备的电磁兼容的形成,主要是由于各行各业电力设备的增加,周围环境中无线通信设备、电动设备、高频设备的大量使用,设备相互之间形成的电磁干扰不断加剧导致的。根据电力设备的电磁兼容情况,行业人士知道设备之间相互干扰,即有的设备不仅自己容易受到各种干扰,而且还要干扰其它设备。其实许多设备都存在电磁兼容现象,只不过还未明显地察觉到它们之间存在的干扰,但这些潜在的威胁已经影响到电力设备的安全运行。当然,设备的电磁兼容还包括电磁泄漏所带来的安全隐患。电磁泄漏指有用信息的泄漏,它们虽然是微弱的电磁信号,但是对某些恶意的攻击者来说,一旦对某些信息感兴趣时,可以非常方便的利用现代手段截获、放大、解密或解码来获取信息。
电磁干扰主要有以下几种:
1.谐波的干扰
谐波对一次设备的影响和危害主要表现在以下几方面:增加设备的损耗,提高温升,降低设备的出力和寿命;增加绝缘中的介质损耗和局部放电量,加速绝缘老化;增加电动机的振动和噪音。
谐波对二次设备的主要影响是干扰其正常的工作状态,诸如测量的准确度,动作的可靠性等。
谐波对继电保护装置的干扰,在故障情况下,影响较大的是距离保护。阻抗继电器是按系统的基波阻抗整定的,谐波的出现.特别是3次谐波会引起很大的测量误差,严重时可能导致拒动或误动。
2.一次回路中的开关操作
主要是电力网中断路器、隔离开关等的操作,引起电容器组、空载变压器、电抗器、电动机等产生过电压,弓l起电磁干扰。
3.雷击干扰
当雷电击中电网中的变电站后,大电流将经接地点泄入地网,使接地点电位大大升高,若二次回路接地点靠近雷击大电流的入地点,则二次回路接地点电位将随之升高,会在二次同路中形成共模干扰,引起过电压,严重时会造成二次设备绝缘击穿。
4.二次回路自身的干扰
二次回路自身的干扰主要是通过电磁感应而产生的。变电站或发电厂的综合电力设备的数字集成电路装置,很多是采用单片机系统来实现的。由于该系统中的印刷电路板(PCB)上的器件均是由直流电源供电,而直流回路中有许多大电感线圈,在进行开关操作时,线圈两端将出现过电压,它会感应出不利于二次设备正常工作的感应电压和感应电流,对PCB上的器件造成干扰,从而干扰单片机系统的正常工作。
电磁干扰从干扰源传递到敏感设备有两种方式,即传导和辐射。传导分为电导性耦合直接耦合、电容性耦台电场耦合和电感性耦合。辐射主要为电磁耦合。通过磁场产生的干扰,由导体间的互感引起。当二次回路中电流发生突变时,交链到二次回路的磁通也随之发生变化,进而感应出干扰电压。一次回路暂态电流幅值越大,频率越高,一次回路与二次回路间的磁联系越强,则感性耦合造成的干扰就越大。电力系统的干扰主要是通过TA、CVT及传输电缆传至低压设备,其次是通过高频辐射耦合,主要耦合形式为电导性和电感性耦合。
四、抑制电磁干扰的措施
在任何系统中,形成EMC必须具备3个基本条件(称电磁干扰三要素):存在干扰源、有对干扰源敏感的接收单元、有把能量从干扰源耦合到接受单元上的通道。
根据电磁干扰的类型和特点,一般采取屏蔽、滤波和接地方法抑制电磁干扰。
1.干扰传输通道抑制
(1)屏蔽可分为电场屏蔽、磁场屏蔽和电磁屏蔽3种,一般采取电磁屏蔽的方法来防止交变电磁场产生的干扰。屏蔽有两个目的:a、限制设备内辐射的电磁能量泄露到外部;b.防止外来的辐射干扰进入设备,干扰设备的正常工作。
a.电场屏蔽法
最简单的措施是在感应源与受感器之间用金属隔板接地,以抑制寄生电容耦合,实现电场屏蔽。对电场干扰较强的,则用高导电率金属罩接地效果更好。
b.磁场屏蔽法
磁场又分低频磁场和高频磁场,针对不同磁场应采取不同措施。对低频磁场可用高导磁材料做屏蔽体来实现磁场屏蔽,但被屏蔽的元器件在平行于磁场的方向不得出现缝隙,以避免漏磁。对高频磁场由于存在电场分量和磁场分量,则要求采用电场屏蔽和磁场屏蔽同时进行。但铁磁材料防高频磁场只限于100kHz以下,更高频的磁场还需采取特殊措施,为防止缝隙、孔洞漏磁,要尽可能减少缝隙或增加缝隙深度,在孔洞处加盖金属罩,如有凸出的金属轴必须可靠接地或加装波导衰减器等。
当要屏蔽的磁场很强时,屏蔽材料会发生饱和,一旦发生饱和,就将丧失屏蔽效能。遇到这种情况,可采用双层屏蔽,第一层采用低导磁率材料,不易饱和;第二层采用高导磁率材料,但易饱和。第一层屏蔽先将磁场衰减到适当强度,使第二层屏蔽不会饱和,而使高导磁率材料能充分发挥屏蔽效果。
- 1
- 2
- 总2页
http:www.cps800.com/news/44832.htm