调制识别技术在军、民领域都有着广泛的应用价值,近年来一直受到人们的关注。随着更多调制技术的应用,调制识别技术也在不断向前发展,并应用于各个领域。目前已经存在的数字频带传输方式有振幅键控(ASK)、频移键控(FSK)和相移键控(PSK)。并且,数字信息有二进制和多进制之分,因此,数字调制可分为二进制调制和多进制调制。一些特殊的调制方式还有QAM、MSK、GMSK、OFDM。在多进制相移键控调制方式中,四进制(即QPSK)调制方式应用最为广泛。
1 QPSK基本原理
理论上OPSK信号为频带无限宽的恒包络信号,但我们知道,为避免干扰相邻通道,实际信道总是限带的,经限带后的QPSK信号已不能保持恒包络,由于QPSK的I、Q两路数据信号的极性转换时间相同,即码元的沿是对齐的,其信号的相位变化有0°、±90°、180°4种,其中180°相位变化的信号经限带后会出现包络为0的现象,这在实际信道是不希望出现的。OQPSK是针对QPSK的一种改进形式,OQPSK信号则把Q路信号和I路错开了半个码元周期(相对I路或Q路的码元周期Ts而言),因而信号的相位变化在任何一个的整数倍处都可能发生,但两路信号的相位变化不会同时发生,这样,输出的OQPSK信号只有0°、±90°3种相位变化,如图1所示,信号经限带后包络的最大值与最小值之比约为,这就可以预计,它在实际信道中的特性将优于QPSK信号。
2 基带信号的产生
OQPSK中,同相和正交这两信道如同两个独立的BPSK信道,可以分别进行编码,因此,在实际应用中,OQPSK信号往往传输两路不同信息。以常用的直扩通信为例,若设伪码时钟速率为fs,信息码速率为fx=fs/N,时钟速率为fc=fs,则其实现的电路如图2所示。
由时钟产生频率为fc,占空比为50%的时钟信号,分两路输出。一路经同相放大后作为I路伪码的时钟,同时,对其进行N次分频后,作为I路信息码的时钟。另一路经反相放大后作为Q路伪码的时钟,同时,对其进行N次分频后,作为Q路信息码的时钟。同步控制使信息码和伪码处于同步。信息流经串并变换后,分别在I/Q选择信号的控制下,送入I路FIFO或Q路FIFO单元,FIFO单元以时钟fx=fc/N的速率向编码器发送信息数据,信息经编码后与伪码异或生成基带信号。由于I路和Q路信号的时钟相差半个时钟周期,因此,I路基带信号和Q路基带信号也就错开了半个时钟周期。
3 OQPSK调制的实现
由于在基带信号中已对I/Q路信号进行了的延时处理,因此,OQPSK信号可由基带信号对载波进行正交调制产生。虽然OQPSK信号通过BPF后包络起伏小,但其在码元转换时,相位仍存在90°的跳变,使信号频谱高频滚降慢,频带较宽。为了抑制已调信号的带外辐射,分别对同相和正交支路的数字信号进行编码,如双码元间隔升余弦脉冲,双码元间隔三角脉冲等。双码元间隔升余弦脉冲可由式(1)表示:
- 1
- 2
- 总2页
来源:互联网
http:www.cps800.com/news/33717.htm